Mitochondrial permeability transition dictates mitochondrial maturation upon switch in cellular identity of hematopoietic precursors. Dumbali S.P., Horton, P.D., Moore, T.I. & Wenzel P.L. Communications Biology. 7:967:1-16, https://doi.org/10.1038/s42003-024-06671-y, 2024.
Editorial: Advances and methods in mesenchymal stem cells. Wenzel P.L. Frontiers in Cell and Developmental Biology. 12:1382019, https://doi.org/10.3389/fcell.2024.1382019, 2024.
Persistent tailoring of MSC activation through genetic priming. Beauregard, M.A., Bedford, G.C., Brenner, D.A., Sanchez Solis, L.D., Nishiguchi, T., Abhimanyu, Longlax, S.C., Mahata, B., Veiseh, O., Wenzel, P.L., DiNardo, A.R., Hilton, I.B., & Diehl, M.R. bioRxiv. doi: https://doi.org/10.1101/2024.02.01.578489, 2024.
Mitochondrial permeability transition in stem cells, development, and disease. Dumbali S.P. & Wenzel P.L. Advances in Experimental Medicine and Biology – Cell Biology and Translational Medicine. 1409:1-22, https://doi.org/10.1007/5584_2022_720, 2023.
RhoA-ROCK competes with YAP to regulate amoeboid breast cancer cell migration in response to lymphatic-like flow. Mohammadalipour, A., Diaz, M.F., Livingston, M., Ewere, A., Zhou, A., Horton, P.D., Olamigoke, L.T., Lamar, J.M., Hagan, J.P., Lee, H.J., & Wenzel, P.L. FASEB BioAdvances. 4:342-361, https://doi.org/10.1096/fba.2021-00055, 2022.
Exth: Targeting CD73 in GBM sensitizes tumors to oncolytic virus therapy. Murphy, S., Mullarkey, M.P., Sahu, U., Hong, B., Lewis, C., Diaz, M., Wenzel, P., Kamal, A.H.M., Putluri, N., Park, J., Kaipparettu, B., Kaur, B. Neuro-Oncology. Volume 24, Issue Supplement_7, Page vii227, https://doi.org/10.1093/neuonc/noac209.875, 2022.
Ex vivo modeling of hematopoietic stem cell homing to the fetal liver. Mohammadalipour, A., Diaz, M.F., Pareek, S., & Wenzel, P.L. Methods in Molecular Biology. 2346:35-50, doi: 10.1007/7651_2020_293. https://link.springer.com/protocol/10.1007/7651_2020_293, 2021.
Biomechanical Regulation of Hematopoietic Stem Cells in the Developing Embryo. Horton, P.D., Dumbali, S., Rajkumar Bhanu, K., Diaz, M.F., & Wenzel, P.L. Current Tissue Microenvironment Reports. 2:1-15. https://doi.org/10.1007/s43152-020-00027-4, 2021.
Bone marrow stromal cell therapy improves survival after radiation injury but does not restore endogenous hematopoiesis. Diaz, M.F., Horton, P.D., Kumar, A., Livingston, M., Dumbali, S.P., Skibber, M.A., Mohammadalipour, A., Gill, B.S., Zhang, S., Cox, C.S., & Wenzel, P.L. Scientific Reports. 10(1):22211. doi: 10.1038/s41598-020-79278-y, 2020.
Mitochondrial transfer and regulators of mesenchymal stromal cell function and therapeutic efficacy. Mohammadalipour, A., Dumbali, S.P., & Wenzel, P.L. Frontiers in Cell and Developmental Biology. 8:603292. doi: 10.3389/fcell.2020.603292, 2020.
Injury intensifies T cell mediated graft-versus-host disease in a humanized model of traumatic brain injury. Diaz, M.F., Horton, P.D., Kumar, A., Livingston, M., Mohammadalipour, A., Xue, H., Skibber, M.A., Ewere, A., Toledano Furman, N.E., Aroom, K.R., Zhang, S., Gill, B.S., Cox, C.S., & Wenzel, P.L. Scientific Reports. 10(1):10729. doi: 10.1038/s41598-020-67723-x, 2020.
Mechanoregulation in hematopoiesis and hematologic disorders. Horton, P.D., Dumbali, S., & Wenzel, P.L. Current Stem Cell Reports. Sep;6(3):86-95. doi: 10.1007/s40778-020-00172-4. https://link.springer.com/article/10.1007/s40778-020-00172-4, 2020.
Bmi1 Maintains the Self-Renewal Property of Innate-like B Lymphocytes. Kobayashi, M., Lin, Y., Mishra, A., Shelly, C., Gao, R., Reeh, C.W., Wang, P.Z., Xi, R., Liu, Y., Wenzel, P., Ghosn, E., Liu, Y., Yoshimoto, M. Journal of Immunology. 204(12):3262-3272, doi: 10.4049/JIMMUNOL.2000030, 2020.
Mesenchymal Stromal Cell Therapeutic Delivery: Translational Challenges to Clinical Application. Caplan, H.W., Olson, S.D., Kumar, A., George, M.J., Prabhakara, K.S., Wenzel, P.L., Bedi, S., Toledano Furman, N.E., Triolo, F., Kamhieh-Milz, J., Moll, G., Cox, C.S. Frontiers in Immunology. 10:1645, doi: 10.3389/fimmu.2019.01645, 2019.
AIBP-mediated Cholesterol Efflux Instructs Hematopoietic Stem and Progenitor Cell Fate. Gu, Q., Yang, X., Lv, J., Zhang, J., Xia, B., Kim, J., Wang, R., Xiong, F., Meng, S., Clements, T.P., Tandon, B., Wagner, D.S., Diaz, M.F., Wenzel, P.L., Miller, Y.I., Traver, D., Cooke, J.P., Li, W., Zon, L.I., Chen, K., Bai, Y., & Fang, L. Science. 363(6431): 1085-1088, doi: 10.1126/science.aav1749, 2019.
Hemogenic endothelial cells can transition to hematopoietic stem cells through a B-1 lymphocyte-biased state during maturation in the mouse embryo. Kobayashi, M., Tarnawsky, S.P., Wei, H., Mishra, A., Portilho, N.A., Wenzel, P., Davis, B., Wu, J., Hadland, B., & Yoshimoto, M. Stem Cell Reports. 13: 21-30, doi: 10.1016/j.stemcr.2019.05.025, 2019.
Long-term engraftment of ESC-derived B-1 progenitors supports HSC-independent lymphopoiesis. Lin, Y., Kobayashi, M., Azevedo Portilho N., Mishra, A., Gao, H., Liu, Y., Wenzel, P., Davis, B., Yoder, M.C., & Yoshimoto, M. Stem Cell Reports. 12(3): 572-583, doi: 10.1016/j.stemcr.2019.01.006, 2019.
TAZ responds to fluid shear stress to regulate the cell cycle. Lee, H.J., Ewere, A., Diaz, M.F., & Wenzel, P.L. Cell Cycle. 17(2): 147-153, doi: 10.1080/15384101.2017.1404209, 2018.
An Anti-inflammatory Co-culture Assay to Determine Efficacy of TNF-α Suppression by Biomechanically Induced Human Bone Marrow Mesenchymal Stem Cells. Diaz, M.F., Evans, S.M., Olson, S.D., Cox, C.S., & Wenzel, P.L. Bio-Protocol. 7(16): e2513. doi: 10.21769/BioProtoc.2513, 2017.
Focal adhesion kinase signaling regulates anti-inflammatory function of bone marrow mesenchymal stromal cells induced by biomechanical force. Lee, H.J., Diaz, M.F., Ewere, A., Olson, S.D., Cox, C.S., & Wenzel, P.L. Cellular Signalling. 38:1-9. doi: 10.1016/j.cellsig.2017.06.012, 2017.
Fluid shear stress activates YAP1 to promote cancer cell motility. Lee, H.J., Diaz, M.F., Price, K.M., Ozuna, J.A., Zhang, S., Sevick-Muraca, E.M., Hagan, J.P., & Wenzel, P.L. Nature Communications. 8:14122, doi: 10.1038/ncomms14122, 2017. Recommended in F1000Prime for special significance in its field.
Biomechanical forces promote immune regulatory function of bone marrow mesenchymal stromal cells. Diaz, M.F., Vaidya, A.B., Evans, S.M., Lee, H.J., Aertker, B.M., Alexander, A.J., Price, K.M., Ozuna, J.A., Liao, G.P., Aroom, K.R., Xue, H., Gu, L., Omichi, R., Bedi, S., Olson, S.D., Cox, C.S., & Wenzel, P.L. Stem Cells. 35:1259-1272, doi: 10.1002/stem.2587, 2017.
Prostaglandin E2 indicates therapeutic efficacy of mesenchymal stem cells in experimental traumatic brain injury. Kota, D.J., Prabhakara, K.S., Toledano-Furman, N., Bhattarai, D., Chen, Q., DiCarlo, B., Smith, P., Triolo, F., Wenzel, P.L., Cox, C.S., & Olson, S.D. Stem Cells. 35:1416-1430, doi: 10.1002/stem.2603, 2017.
Biomechanical Forces Promote Blood Development through Prostaglandin E2 and the cAMP-PKA Signaling Axis. Diaz, M.F., Li, N., Lee, H.J., Adamo, L., Evans, S.M., Willey, H.E., Arora, N., Torisawa, Y., Vickers, D.A., Morris, S.A., Naveiras, O., Murthy, S.K., Ingber, D.E., Daley, G.Q., García-Cardeña, G., & Wenzel, P.L. Journal of Experimental Medicine. 212:665-680, doi: 10.1084/jem.20142235, 2015. This article was selected for journal cover art and accompanying commentary article.
Notch1 acts via Foxc2 to induce specification of hemogenic endothelial cells during mouse and zebrafish embryo development. Jang, I.-H., Lu, Y.-F., Zhao, L., Wenzel, P.L., Kume, T., Datta, S.M., Arora, N., Guiu, J., Lagha, M., Kim, P.G., Schlaeger, T.M., Zon, L.I., Bigas, A., Burns, C.E., & Daley, G.Q. Blood. 125:1418-1426, doi: 10.1182/blood-2014-04-568170, 2015.
Application of Fluid Mechanical Force to Embryonic Sources of Hemogenic Endothelium and Hematopoietic Stem Cells. Li, N., Diaz, M.F., & Wenzel, P.L. Methods in Molecular Biology. 1212:183-193, doi: 10.1007/7651_2014_95, 2015.
Effect of developmental stage of HSC and recipient on transplant outcomes. Arora, N., Wenzel, P.L., Ross, S., Chou, S., McKinney-Freeman, S.L., Yoshimoto, M., Yoder, M.C., & Daley, G.Q. Developmental Cell. 29:621-628, doi: 10.1016/j.devcel.2014.04.013, 2014.
Biomechanical force in blood development: extrinsic physical cues drive pro-hematopoietic signaling. Lee, H.J., Li, N., Evans, S.E., Diaz, M.F., & Wenzel, P.L. Differentiation. 89:92-103, doi: 10.1016/j.diff.2013.06.004, 2013.
The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity. Gustafsson, K., Heffner, G., Wenzel, P.L., Curran, M., Grawe, J., McKinney-Freeman, S.L., Daley, G.Q., & Welsh, M. Experimental Cell Research. 319:1852-1864, doi: 10.1016/j.yexcr.2013.03.020, 2013.
Atypical E2F Repressors and Activators Coordinate Placental Development. Ouseph, M.M., Li, J., Chen, H.-Z., Pécot, T., Wenzel, P., Thompson, J.C., Comstock, G., Chokshi, V., Byrne, B., Forde, B., Chong, J.-L., Huang, K., Machiraju, R., de Bruin, A., & Leone, G. Developmental Cell. 22:849-862, doi: 10.1016/j.devcel.2012.01.013, 2012.
Cell Proliferation in the Absence of E2F1-3. Wenzel, P.L.*, Chong, J.-L.*, Saénz-Robles, M.T., Ferrey, A., Hagan, J.P., Gomez, Y.M., Sharma, N., Chen, H.-Z., Robinson, M.L., & Leone, G. Developmental Biology. 351:35-45, doi: 10.1016/j.ydbio.2010.12.025, 2011. *Equal contribution.
Division and apoptosis of E2F-deficient retinal progenitors. Chen, D., Pacal, M., Wenzel, P., Knoepfler, P.S., Eisenman, R., Leone, G., & Bremner, R. Nature. 462:925-929, doi: 10.1038/nature08544, 2009.
E2F1-3 switch from activators in progenitor cells to repressors in differentiating cells. Chong, J.-L.*, Wenzel, P.L.*, Saénz-Robles, M.T.*, Nair, V., Ferrey, A., Hagan, J.P., Gomez, Y.M., Sharma, N., Chen, H.-Z., Ouseph, M., Wang, S.-H., Trikha, P., Culp, B., Mezache, L., Winton, D.J., Sansom, O.J., Chen, D., Bremner, R., Cantalupo, P.G., Robinson, M.L., Pipas, J.M. & Leone, G. Nature. 462:930-934, doi: 10.1038/nature08677, 2009. *Equal contribution.
Bone marrow adipocytes as negative regulators of the hematopoietic microenvironment. Naveiras, O., Nardi, V.*, Wenzel, P.L.*, Hauschka, P.V., Fahey, F., & Daley, G.Q. Nature. 460:259-263, doi: 10.1038/nature08099, 2009. *Equal contribution.
Biomechanical forces promote embryonic haematopoiesis. Adamo, L.*, Naveiras, O.*, Wenzel, P.L., McKinney-Freeman, S., Mack, P.J., Gracia-Sancho, J., Suchy-Dicey, A., Yoshimoto, M., Lensch, M.W., Yoder, M.C., García-Cardeña, G., & Daley, G.Q. Nature. 459:1131-1135, doi: 10.1038/nature08073, 2009. *Equal contribution.
An imaging workflow for characterizing phenotypical change in large histological mouse model datasets. Mosaliganti, K., Pan, T., Ridgway, R., Sharp, R., Cooper, L., Gulacy, A., Sharma, A., Irfanoglu, O., Machiraju, R., Kurc, T., de Bruin, A., Wenzel, P., Leone, G., Saltz, J., & Huang, K. Journal of Biomedical Informatics. 41(6):863-873, doi: 10.1016/j.jbi.2008.03.013, 2008.
Detection and visualization of surface-pockets to enable phenotyping studies. Mosaliganti, K., Janoos, F., Sharp, R., Ridgway, R., Machiraju, R., Huang, K., Wenzel, P., de Bruin, A., Leone, G., & Saltz, J. IEEE Transactions on Medical Imaging. 26(9):1283-1290, doi: 10.1109/TMI.2007.903570, 2007.
Rb-mediated neuronal differentiation through cell-cycle-independent regulation of E2f3a. Chen, D., Opavsky, R., Pacal, M., Tanimoto, N., Wenzel, P., Seeliger, M.W., Leone, G., & Bremner, R. PLoS Biology. 5(7):e179, doi: 10.1371/journal.pbio.0050179, 2007.
Expression of Cre recombinase in early diploid trophoblast cells of the mouse placenta. Wenzel, P.L. & Leone, G. Genesis. 45(3):129-134, doi: 10.1002/dvg.20276, 2007.
Role of the Rb tumor suppressor in regulation of stem cell proliferation. Wenzel, P.L. http://Scitizen.com, 2007.
Distinct Roles for E2f1 and E2f3a in Mediating Division, Death and Differentiation Defects in Rb-Deficient Mouse Retina. Chen, D., Opavsky, R., Pacal, M., Tanimoto, N., Wenzel, P., Seeliger, M.W., Leone, G., & Bremner, R. Investigative Ophthalmology & Visual Science. 48(13):5687, 2007.
Volume Rendering Phenotype Differences in Mouse Placenta Microscopy Data. Sharp, R., Ridgway, R., Mosaliganti, K., Wenzel, P., Pan, T., de Bruin, A., Machiraju, R., Huang, K., Leone, G., & Saltz, J. Computing in Science & Engineering. 9:38-47, doi: 10.1109/MCSE.2007.23, 2007.
Rb is critical in a mammalian tissue stem cell population. Wenzel, P.L.*, Wu, L.*, de Bruin, A., Chong, J.L., Chen, W.Y., Dureska, G., Sites, E., Pan, T., Sharma, A., Huang, K., Ridgway, R., Mosaliganti, K., Sharp, R., Machiraju, R., Saltz, J., Yamamoto, H., Cross, J.C., Robinson, M.L., & Leone, G. Genes & Development. 21(1):85-97, doi: 10.1101/gad.1485307, 2007. *Equal contribution.
Multi-Resolution Image Segmentation Using the 2-Point Correlation Functions. Janoos, F., Irfanoglu, M.O., Mosaliganti, K., Machiraju, R., Huang, K., Wenzel, P.L., deBruin, A., & Leone, G. 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro – Proceedings. Washington, DC, USA, April 12-16, 2007: 300-303, doi: 10.1109/ISBI.2007.356848, 2007.
Examining Phenotype Differences in Mouse Placenta with Volume Rendering and Segmentation. Sharp, R., Ridgway, R., Mosaliganti, K., Irfanoglu, O., Wenzel, P., Machiraju, R., de Bruin, A., Leone, G., Pan, T., Huang, K., & Saltz, J. 2006 IEEE/NLM Life Science Systems and Applications Workshop. pp. 1-2, doi: 10.1109/LSSA.2006.250431, 2006.
Registration and 3D visualization of large microscopy images. Mosaliganti, K., Pan, T., Sharp, R., Ridgway, R., Iyengar, S., Gulacy, A., Wenzel, P., de Bruin, A., Machiraju, R., Huang, K., Leone, G., & Saltz, J. Proceedings of SPIE International Society of Optical Engineering. 6144:61442V, doi: 10.1117/12.653505, 2006.
Virtual Microscopy: Distributed Image Storage, Retrieval, Analysis, and Visualization. Pan, T., Jewel, S., Catalyurek, U., Wenzel, P., Leone, G., Hastings, S., Oster, S., Langella, S., Kurc, T., Saltz, J., & Cowden, D. Parallel Computing for Bioinformatics and Computational Biology: Models, Enabling Technologies, and Case Studies. 737-763, doi: 10.1002/0471756504.ch29, 2006.
Rb function in extraembryonic lineages suppresses apoptosis in the CNS of Rb-deficient mice. de Bruin, A., Wu, L., Saavedra, H.I., Wilson, P., Yang, Y., Rosol, T.J., Weinstein, M., Robinson, M.L., & Leone, G. Proceedings of the National Academy of Sciences USA. 100(11):6546-6551, doi: 10.1073/pnas.1031853100, 2003.
Extra-embryonic function of Rb is essential for embryonic development and viability. Wu, L., de Bruin, A., Saavedra, H.I., Starovic, M., Trimboli, A., Yang, Y., Opavska, J., Wilson, P., Thompson, J.C., Ostrowski, M.C., Rosol, T.J., Woollett, L.A., Weinstein, M., Cross, J.C., Robinson, M.L., & Leone, G. Nature. 421(6926):942-947, doi: 10.1038/nature01417, 2003.
Google Scholar
Access citations on Google
MyNCBI
View a list of publications on Pubmed
ResearchGate
Find us on ResearchGate